• Skip to main content
  • Skip to primary sidebar

Dharmendra S. Modha

My Work and Thoughts.

  • Brain-inspired Computing
    • Collaborations
    • Videos
  • Life & Universe
    • Creativity
    • Leadership
    • Interesting People
  • Accomplishments
    • Prizes
    • Papers
    • Positions
    • Presentations
    • Press
    • Profiles
  • About Me

A Proposal for Mouse Connectivity Project

January 30, 2009 By dmodha

My colleague, Anthony Ndirango, pointed out a very interesting document that proposes to synthesize complete brainwide neuroanatomical connectivity in mouse at a mesoscopic scale within 5 years and at a cost of less than 20 million dollars.

Title: A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

Authors: Jason W. Bohland, Caizhi Wu, Helen Barbas, Hemant Bokil, Mihail Bota, Hans C. Breiter, Hollis T. Cline, John C. Doyle, Peter J. Freed, Ralph J. Greenspan, Suzanne N. Haber, Michael Hawrylycz, Daniel G. Herrera, Claus C. Hilgetag, Z. Josh Huang, Allan Jones, Edward G. Jones, Harvey J. Karten, David Kleinfeld, Rolf Kotter, Henry A. Lester, John M. Lin, Brett D. Mensh, Shawn Mikula, Jaak Panksepp, Joseph L. Price, Joseph Safdieh, Clifford B. Saper, Nicholas D. Schiff, Jeremy D. Schmahmann, Bruce W. Stillman, Karel Svoboda, Larry W. Swanson, Arthur W. Toga, David C. Van Essen, James D. Watson and Partha P. Mitra

Abstract: In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.

Filed Under: Brain-inspired Computing

Primary Sidebar

Recent Posts

  • Breakthrough low-latency, high-energy-efficiency LLM inference performance using NorthPole
  • Breakthrough edge AI inference performance using NorthPole in 3U VPX form factor
  • NorthPole in The Economist
  • NorthPole in Computer History Museum
  • NorthPole: Neural Inference at the Frontier of Energy, Space, and Time

Archives by Month

  • 2024: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2023: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2022: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2020: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2019: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2018: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2017: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2016: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2015: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2014: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2013: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2012: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2011: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2010: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2009: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2008: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2007: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2006: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Copyright © 2025