• Skip to main content
  • Skip to primary sidebar

Dharmendra S. Modha

My Work and Thoughts.

  • Brain-inspired Computing
    • Collaborations
    • Videos
  • Life & Universe
    • Creativity
    • Leadership
    • Interesting People
  • Accomplishments
    • Prizes
    • Papers
    • Positions
    • Presentations
    • Press
    • Profiles
  • About Me

ASYNC 2012: A Digital Neurosynaptic Core Using Event-Driven QDI Circuits

May 10, 2012 By dmodha

Building on recently published cognitive computing chip technology, this week at ASYNC 2012: IEEE International Symposium on Asynchronous Circuits and Systems Cornell-IBM team published a new paper that won the Best Paper Award.  

TITLE: A Digital Neurosynaptic Core Using Event-Driven QDI Circuits

AUTHORS: Nabil Imam, Filipp Akopyan, John Arthur, Paul Merolla, Rajit Manohar, Dharmendra S Modha

ABSTRACT: We design and implement a key building block of a scalable neuromorphic architecture capable of running spiking neural networks in compact and low-power hardware. Our innovation is a configurable neurosynaptic core that combines 256 integrate-and-fire neurons, 1024 input axons, and 1024×256 synapses in 4.2mm2 of silicon using a 45nm SOI process. We are able to achieve ultra-low energy consumption 1) at the circuit-level by using an asynchronous design where circuits only switch while performing neural updates; 2) at the core-level by implementing a 256 neural fanout in a single operation using a crossbar memory; and 3) at the architecture level by restricting core-to-core communication to spike events, which occur relatively sparsely in time. Our implementation is purely digital, resulting in reliable and deterministic operation that achieves for the first time one-to-one correspondence with a software simulator. At 45pJ per spike, our core is readily scalable and provides a platform for implementing a wide array of real-time computations. As an example, we demonstrate a sound localization system using coincidence-detecting neurons.

Filed Under: Accomplishments, Brain-inspired Computing, Papers

Primary Sidebar

Recent Posts

  • Breakthrough low-latency, high-energy-efficiency LLM inference performance using NorthPole
  • Breakthrough edge AI inference performance using NorthPole in 3U VPX form factor
  • NorthPole in The Economist
  • NorthPole in Computer History Museum
  • NorthPole: Neural Inference at the Frontier of Energy, Space, and Time

Archives by Month

  • 2024: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2023: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2022: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2020: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2019: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2018: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2017: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2016: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2015: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2014: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2013: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2012: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2011: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2010: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2009: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2008: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2007: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2006: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Copyright © 2025