I am currently at the SFN 2006 Conference in Atlanta, where over 25,000+ other scientists are participating. The conference has featured talks (which are held in a ballroom that can hold 5,000 people), regular presentations (in a number of parallel sessions), posters (which are held in a room which is the size of perhaps 3-4 football stadiums), symposia, mini-symposia, exhibit booths, satellite events, and a variety of scientific socials. The breadth of the topics pursued and the scale of the conference is, to say the least, mind-boggling.
I have met a number of old friends and colleagues, made new conections, and obtained a number of valuable insights for future work.
The conference is definitely dominated by scientists with a bottoms-up approach and is lacking in theorists who put together the whole picture.
In the highlight event for the conference, noted architect Frank Gehry advised us to "search for your own character" but "within the grounded constraints of reality." He explained how he started his career by going back 300 million years to the structure of primitive fish!
In his beautifully articulated acceptance speech for the Peter Gruber Prize, Professor Masao Ito (who is famous for explaining the cerebellar functioning and is credited with the understanding long-term synaptic depression) said that his dream is to eventually explain "unconscious domain of mind."
In a featured lecture, Professor J. A. Movshon described how he and his colleagues uncovered the properties of MT (V4).
In a satellite event, namely, Advances in Computational Motor Control V, Professor Chris Atkeson from CMU showed a number of very impressive robotic demos. His work is based entirely on instance-learning, one-shot learning, or motor tape theory. He openly admitted to having diverged from neuroscience. A question was raised whether the approach is "just a bag of tricks". At the same event Professor Emo Todorov explained his theory of compositionality whereby simple control systems such as linear quadratic regulators and eigen-controllers can be composed together while maintaining mathematical and analytical tractability as long as they share the underlying dynamics. Dr. Jeff McKinstry showed off a demo of a brain-based device that can learn to avoid obstacles by using a model of cerebellum that learns to replace reflexes with a predictive controller, namely, preflexes.
In a symposium on Intenal Models for Sensorimotor Integration, Professor Reza Shadmehr described how to model "living with a changing body", for example, fatigue tires us but vanishes relatively quickly whereas disease changes us for a relatively longer period. He explained several models that use two learning rules: a rule that learns and forgets fast and a rule that learns and forgets slowly. In a fascinating talk, Professor Andrea M. Green described how a monkey (whose body is made rigid) can distinguish between tilts and translations.
It is impossible to succinctly summarize the entire technical experience, but I met people who study saccades, grasping and reaching, neocortical circuits, cerebellar microcomplex, spiking neurons, firing rate neurons, neuro-anatomy, neuro-informatics, robotics, rats in various mazes, cognitive maps of memory, reinforcement learning, hippcampus, striatum, neuro-prosthetics, place cells in hippocampus and related grid cells in the cortex, thalamus, and many others.
A tasty tidbit: umami has now been recognized as the fifth basic taste.
My prediction is that SFN 2007 and beyond will start attracting a lot more (cognitive) computer scientists…at least it should!
My brain and body are tired (the distances are too large, there are too many presentations/posters, the food is terrible, the temperature is too cold, ventilation is not very good, it is hard to navigate through crowds, there is no California sunshine), but my mind is all fired up and intensely happy 🙂 So far, the meeting has been exceptionally energizing and productive.