• Skip to main content
  • Skip to primary sidebar

Dharmendra S. Modha

My Work and Thoughts.

  • Brain-inspired Computing
    • Collaborations
    • Videos
  • Life & Universe
    • Creativity
    • Leadership
    • Interesting People
  • Accomplishments
    • Prizes
    • Papers
    • Positions
    • Presentations
    • Press
    • Profiles
  • About Me

“Why is Real-World Visual Object Recognition Hard?”

January 25, 2008 By dmodha

In a study published in PLoS Computational Biology, the authors address a key issue of "Why is Real-World Visual Object Recognition Hard?":

Abstract: Progress in understanding the brain mechanisms underlying vision requires the construction of computational models that not only emulate the brain’s anatomy and physiology, but ultimately match its performance on visual tasks. In recent years, ‘‘natural’’ images have become popular in the study of vision and have been used to show apparently impressive progress in building such models. Here, we challenge the use of uncontrolled ‘‘natural’’ images in guiding that progress. In particular, we show that a simple V1-like model—a neuroscientist’s ‘‘null’’ model, which should perform poorly at real-world visual object recognition tasks—outperforms state-of-the-art object recognition systems (biologically inspired and otherwise) on a standard, ostensibly natural image recognition test. As a counterpoint, we designed a ‘‘simpler’’ recognition test to better span the real-world variation in object pose, position, and scale, and we show that this test correctly exposes the inadequacy of the V1-like model. Taken together, these results demonstrate that tests based on uncontrolled natural images can be seriously misleading, potentially guiding progress in the wrong direction. Instead, we reexamine what it means for images to be natural and argue for a renewed focus on the core problem of object recognition—real-world image variation.

Reference: Pinto N, Cox DD, DiCarlo JJ (2008) Why is real-world visual object recognition hard? PLoS Comput Biol 4(1): e27. doi:10.1371/journal.pcbi.0040027)

Filed Under: Brain-inspired Computing

Primary Sidebar

Recent Posts

  • Breakthrough low-latency, high-energy-efficiency LLM inference performance using NorthPole
  • Breakthrough edge AI inference performance using NorthPole in 3U VPX form factor
  • NorthPole in The Economist
  • NorthPole in Computer History Museum
  • NorthPole: Neural Inference at the Frontier of Energy, Space, and Time

Archives by Month

  • 2024: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2023: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2022: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2020: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2019: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2018: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2017: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2016: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2015: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2014: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2013: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2012: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2011: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2010: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2009: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2008: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2007: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2006: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Copyright © 2025