• Skip to main content
  • Skip to primary sidebar

Dharmendra S. Modha

My Work and Thoughts.

  • Brain-inspired Computing
    • Collaborations
    • Videos
  • Life & Universe
    • Creativity
    • Leadership
    • Interesting People
  • Accomplishments
    • Prizes
    • Papers
    • Positions
    • Presentations
    • Press
    • Profiles
  • About Me

Vivienne Ming

July 2, 2008 By dmodha

Today, we had a quite an interesting talk from Dr. Vivienne Ming.

Title: Sparse codes for natural sounds

Abstract: The auditory neural code must serve a wide range of tasks that require great sensitivity in time and frequency and be effective over the diverse array of sounds present in natural acoustic environments. It has been suggested (Barlow, 1961; Atick, 1992; Simoncelli & Olshausen, 2001; Laughlin & Sejnowski, 2003) that sensory systems might have evolved highly efficient coding strategies to maximize the information conveyed to the brain while minimizing the required energy and neural resources. In this talk, I will show that, for natural sounds, the complete acoustic waveform can be represented efficiently with a nonlinear model based on a population spike code. In this model, idealized spikes encode the precise temporal positions and magnitudes of underlying acoustic features. We find that when the features are optimized for coding either natural sounds or speech, they show striking similarities to time-domain cochlear filter estimates, have a frequency-bandwidth dependence similar to that of auditory nerve fibers, and yield significantly greater coding efficiency than conventional signal representations. These results indicate that the auditory code might approach an information theoretic optimum and that the acoustic structure of speech might be adapted to the coding capacity of the mammalian auditory system.

Bio: Vivienne Ming received her B.S. (2000) in Cognitive Neuroscience from UC San Diego, developing face and expression recognition systems in the Machine Perception Lab. She earned her M.A. (2003) and Ph.D. (2006) in Psychology from Carnegie Mellon University along with a doctoral training degree in computational neuroscience from the Center for the Neural Basis of Cognition. Her dissertation, Efficient auditory coding, combined computational and behavioral approaches to study the perception of natural sounds, including speech. Since 2006, she has worked jointly as a junior fellow and post-doctoral researcher at the Redwood Center for Theoretical Neuroscience at UC Berkeley and MBC/Mind, Brain & Cognition at Stanford University developing statistical models for auditory scene analysis.

Filed Under: Interesting People

Primary Sidebar

Recent Tweets

  • Fundamental Principle: Nature Abhors Gradients. https://t.co/KI2CRhWJdRover a year ago
  • The TrueNorth Journey https://t.co/XnpDScCAUV @IBMResearchover a year ago
  • Inspiration: "No great thing is created suddenly" - Epictetusover a year ago
  • IEEE Computer Cover Feature — TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years @IBMResearch… https://t.co/4fvYk2JCPTover a year ago
  • "In 2012, computer scientist Dharmendra Modha used a powerful supercomputer to simulate the activity of more than 5… https://t.co/Sz17XsG5h5over a year ago
  • Management Tip: Team success is AND, not OR.over a year ago
  • The creation of the electronic brain https://t.co/wBKjGtqkvi via @issuu See page 39 onwards ... @IBMResearchover a year ago
  • Creativity Tip: Beeline to problem, spiral to solution.over a year ago
  • PREPRINT: Low Precision Policy Distillation with Application to Low-Power, Real-time Sensation-Cognition-Action Loo… https://t.co/WZHmGS5AxJover a year ago
  • "The power and performance of neuromorphic computing is far superior to any incremental solution we can expect on a… https://t.co/B2k9ZznHIJover a year ago

Recent Posts

  • Jobs in Brain-inspired Computing
  • Neuromorphic scaling advantages for energy-efficient random walk computations
  • Discovering Low-Precision Networks Close to Full-Precision Networks for Efficient Inference
  • Exciting Opportunities in Brain-inspired Computing at IBM Research
  • The TrueNorth Journey: 2008 – 2018 (video)

Archives by Month

  • 2022: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2020: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2019: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2018: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2017: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2016: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2015: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2014: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2013: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2012: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2011: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2010: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2009: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2008: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2007: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2006: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Evolution: Brain-inspired Computing

Copyright © 2023