• Skip to main content
  • Skip to primary sidebar

Dharmendra S. Modha

My Work and Thoughts.

  • Brain-inspired Computing
    • Collaborations
    • Videos
  • Life & Universe
    • Creativity
    • Leadership
    • Interesting People
  • Accomplishments
    • Prizes
    • Papers
    • Positions
    • Presentations
    • Press
    • Profiles
  • About Me

Building Block of a Programmable Neuromorphic Substrate: A Digital Neurosynaptic Core

June 19, 2012 By dmodha

Last week, IBM-Cornell SyNAPSE Team published the following paper:

Citation: John V. Arthur, Paul A. Merolla, Filipp Akopyan, Rodrigo Alvarez-Icaza, Andrew Cassidy, Shyamal Chandra, Steven K. Esser, Nabil Imam, William Risk, Daniel Rubin, Rajit Manohar, and Dharmendra S. Modha, "Building Block of a Programmable Neuromorphic Substrate: A Digital Neurosynaptic Core", International Joint Conference on Neural Networks, June 2012.

Abstract: The grand challenge of neuromorphic computation is to develop a flexible brain-like architecture capable of a wide array of real-time applications, while striving towards the ultra-low power consumption and compact size of biological neural systems. To this end, we fabricated a key building block of a modular neuromorphic architecture, a neurosynaptic core. Our implementation consists of 256 integrate-and-fire neurons and a 1,024×256 SRAM crossbar memory for synapses that fits in 4.2mm2 using a 45nm SOI process and consumes just 45pJ per spike. The core is fully configurable in terms of neuron parameters, axon types, and synapse states and its fully digital implementation achieves one-to-one correspondence with software simulation models. One-to-one correspondence allows us to introduce an abstract neural programming model for our chip, a contract guaranteeing that any application developed in software functions identically in hardware. This contract allows us to rapidly test and map applications from control, machine vision, and classification. To demonstrate, we present four test cases (i) a robot driving in a virtual environment, (ii) the classic game of pong, (iii) visual digit recognition and (iv) an autoassociative memory.

Filed Under: Accomplishments, Brain-inspired Computing, Papers

Primary Sidebar

Recent Tweets

  • Fundamental Principle: Nature Abhors Gradients. https://t.co/KI2CRhWJdRover a year ago
  • The TrueNorth Journey https://t.co/XnpDScCAUV @IBMResearchover a year ago
  • Inspiration: "No great thing is created suddenly" - Epictetusover a year ago
  • IEEE Computer Cover Feature — TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years @IBMResearch… https://t.co/4fvYk2JCPTover a year ago
  • "In 2012, computer scientist Dharmendra Modha used a powerful supercomputer to simulate the activity of more than 5… https://t.co/Sz17XsG5h5over a year ago
  • Management Tip: Team success is AND, not OR.over a year ago
  • The creation of the electronic brain https://t.co/wBKjGtqkvi via @issuu See page 39 onwards ... @IBMResearchover a year ago
  • Creativity Tip: Beeline to problem, spiral to solution.over a year ago
  • PREPRINT: Low Precision Policy Distillation with Application to Low-Power, Real-time Sensation-Cognition-Action Loo… https://t.co/WZHmGS5AxJover a year ago
  • "The power and performance of neuromorphic computing is far superior to any incremental solution we can expect on a… https://t.co/B2k9ZznHIJover a year ago

Recent Posts

  • Jobs in Brain-inspired Computing
  • Neuromorphic scaling advantages for energy-efficient random walk computations
  • Discovering Low-Precision Networks Close to Full-Precision Networks for Efficient Inference
  • Exciting Opportunities in Brain-inspired Computing at IBM Research
  • The TrueNorth Journey: 2008 – 2018 (video)

Archives by Month

  • 2022: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2020: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2019: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2018: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2017: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2016: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2015: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2014: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2013: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2012: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2011: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2010: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2009: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2008: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2007: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2006: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Evolution: Brain-inspired Computing

Copyright © 2023