• Skip to main content
  • Skip to primary sidebar

Dharmendra S. Modha

My Work and Thoughts.

  • Brain-inspired Computing
    • Collaborations
    • Videos
  • Life & Universe
    • Creativity
    • Leadership
    • Interesting People
  • Accomplishments
    • Prizes
    • Papers
    • Positions
    • Presentations
    • Press
    • Profiles
  • About Me

Breaking News: Energy-Efficient Neuromorphic Classifiers

September 23, 2016 By dmodha

A paper entitled “Energy-Efficient Neuromorphic Classifiers” was published this week in Neural Computation by Daniel Martí, Mattia Rigotti, Mingoo Seok, and Stefano Fusi.

Here is the abstract:

Neuromorphic engineering combines the architectural and computational principles of systems neuroscience with semiconductor electronics, with the aim of building efficient and compact devices that mimic the synaptic and neural machinery of the brain. The energy consumptions promised by neuromorphic engineering are extremely low, comparable to those of the nervous system. Until now, however, the neuromorphic approach has been restricted to relatively simple circuits and specialized functions, thereby obfuscating a direct comparison of their energy consumption to that used by conventional von Neumann digital machines solving real-world tasks. Here we show that a recent technology developed by IBM can be leveraged to realize neuromorphic circuits that operate as classifiers of complex real-world stimuli. Specifically, we provide a set of general prescriptions to enable the practical implementation of neural architectures that compete with state-of-the-art classifiers. We also show that the energy consumption of these architectures, realized on the IBM chip, is typically two or more orders of magnitude lower than that of conventional digital machines implementing classifiers with comparable performance. Moreover, the spike-based dynamics display a trade-off between integration time and accuracy, which naturally translates into algorithms that can be flexibly deployed for either fast and approximate classifications, or more accurate classifications at the mere expense of longer running times and higher energy costs. This work finally proves that the neuromorphic approach can be efficiently used in real-world applications and has significant advantages over conventional digital devices when energy consumption is considered.

Filed Under: Brain-inspired Computing, Collaborations

Primary Sidebar

Recent Tweets

  • Fundamental Principle: Nature Abhors Gradients. https://t.co/KI2CRhWJdRover a year ago
  • The TrueNorth Journey https://t.co/XnpDScCAUV @IBMResearchover a year ago
  • Inspiration: "No great thing is created suddenly" - Epictetusover a year ago
  • IEEE Computer Cover Feature — TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years @IBMResearch… https://t.co/4fvYk2JCPTover a year ago
  • "In 2012, computer scientist Dharmendra Modha used a powerful supercomputer to simulate the activity of more than 5… https://t.co/Sz17XsG5h5over a year ago
  • Management Tip: Team success is AND, not OR.over a year ago
  • The creation of the electronic brain https://t.co/wBKjGtqkvi via @issuu See page 39 onwards ... @IBMResearchover a year ago
  • Creativity Tip: Beeline to problem, spiral to solution.over a year ago
  • PREPRINT: Low Precision Policy Distillation with Application to Low-Power, Real-time Sensation-Cognition-Action Loo… https://t.co/WZHmGS5AxJover a year ago
  • "The power and performance of neuromorphic computing is far superior to any incremental solution we can expect on a… https://t.co/B2k9ZznHIJover a year ago

Recent Posts

  • Jobs in Brain-inspired Computing
  • Neuromorphic scaling advantages for energy-efficient random walk computations
  • Discovering Low-Precision Networks Close to Full-Precision Networks for Efficient Inference
  • Exciting Opportunities in Brain-inspired Computing at IBM Research
  • The TrueNorth Journey: 2008 – 2018 (video)

Archives by Month

  • 2022: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2020: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2019: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2018: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2017: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2016: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2015: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2014: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2013: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2012: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2011: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2010: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2009: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2008: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2007: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2006: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Evolution: Brain-inspired Computing

Copyright © 2023