• Skip to main content
  • Skip to primary sidebar

Dharmendra S. Modha

My Work and Thoughts.

  • Brain-inspired Computing
    • Collaborations
    • Videos
  • Life & Universe
    • Creativity
    • Leadership
    • Interesting People
  • Accomplishments
    • Prizes
    • Papers
    • Positions
    • Presentations
    • Press
    • Profiles
  • About Me

Spiking Optical Flow for Event-based Sensors Using IBM’s TrueNorth Neurosynaptic System

October 28, 2017 By dmodha

A new paper posted to arXiv: Spiking Optical Flow for Event-based Sensors Using IBM’s TrueNorth Neurosynaptic System.

Abstract:

This paper describes a fully spike-based neural network for optical flow estimation from Dynamic Vision Sensor data. A low power embedded implementation of the method which combines the Asynchronous Time-based Image Sensor with IBM’s TrueNorth Neurosynaptic System is presented. The sensor generates spikes with sub-millisecond resolution in response to scene illumination changes. These spike are processed by a spiking neural network running on TrueNorth with a 1 millisecond resolution to accurately determine the order and time difference of spikes from neighboring pixels, and therefore infer the velocity. The spiking neural network is a variant of the Barlow Levick method for optical flow estimation. The system is evaluated on two recordings for which ground truth motion is available, and achieves an Average Endpoint Error of 11% at an estimated power budget of under 80mW for the sensor and computation.

Filed Under: Brain-inspired Computing, Collaborations

Primary Sidebar

Recent Tweets

  • Fundamental Principle: Nature Abhors Gradients. https://t.co/KI2CRhWJdRover a year ago
  • The TrueNorth Journey https://t.co/XnpDScCAUV @IBMResearchover a year ago
  • Inspiration: "No great thing is created suddenly" - Epictetusover a year ago
  • IEEE Computer Cover Feature — TrueNorth: Accelerating From Zero to 64 Million Neurons in 10 Years @IBMResearch… https://t.co/4fvYk2JCPTover a year ago
  • "In 2012, computer scientist Dharmendra Modha used a powerful supercomputer to simulate the activity of more than 5… https://t.co/Sz17XsG5h5over a year ago
  • Management Tip: Team success is AND, not OR.over a year ago
  • The creation of the electronic brain https://t.co/wBKjGtqkvi via @issuu See page 39 onwards ... @IBMResearchover a year ago
  • Creativity Tip: Beeline to problem, spiral to solution.over a year ago
  • PREPRINT: Low Precision Policy Distillation with Application to Low-Power, Real-time Sensation-Cognition-Action Loo… https://t.co/WZHmGS5AxJover a year ago
  • "The power and performance of neuromorphic computing is far superior to any incremental solution we can expect on a… https://t.co/B2k9ZznHIJover a year ago

Recent Posts

  • Jobs in Brain-inspired Computing
  • Neuromorphic scaling advantages for energy-efficient random walk computations
  • Discovering Low-Precision Networks Close to Full-Precision Networks for Efficient Inference
  • Exciting Opportunities in Brain-inspired Computing at IBM Research
  • The TrueNorth Journey: 2008 – 2018 (video)

Archives by Month

  • 2022: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2020: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2019: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2018: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2017: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2016: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2015: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2014: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2013: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2012: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2011: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2010: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2009: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2008: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2007: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
  • 2006: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Evolution: Brain-inspired Computing

Copyright © 2023